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ABSTRACT. Seabirds are declining globally, though the threats they face differ among and within species and populations. Following
substantial population declines at several breeding colonies, Leach’s Storm-Petrel (Hydrobates leucorhous) was uplisted from Least Concern
to Vulnerable by the International Union for Conservation of Nature (IUCN) in 2016. Reasons for these declines are unclear, and it is
important to identify threats the species faces across its global breeding range to guide research directions and inform conservation efforts.
We solicited feedback from 37 Leach’s Storm-Petrel scientific experts from eight countries on the importance of different threats facing
the species on land and at sea. Perceived threats to extant colonies varied spatially, with a consensus within regions for main threats. Most
researchers agreed that the main threats at or near colonies are avian and mammalian predators and onshore light attraction. At-sea threats
have been less studied and were harder to identify and rank, but include offshore lights and structures, spatial shifts in prey, and
contaminants. Climate change was not listed specifically because of its multifaceted repercussions, but several perceived threats are linked
to climate change. Globally, introduction of mammalian predators is an overarching driver of seabird colony decline or extirpation; thus
biosecurity must be considered an important measure for the conservation of storm-petrels. In addition, filling knowledge gaps and
implementing a series of regionally relevant and targeted strategies that lead to small but cumulative conservation successes may be the
best approach for this species.

Avis d'experts sur les menaces pesant sur les océanites cul-blanc (Hydrobates leucorhous) dans l'ensemble
de leur aire de répartition
RÉSUMÉ. Les oiseaux de mer sont en déclin à l'échelle mondiale, bien que les menaces auxquelles ils sont confrontés diffèrent selon les
espèces et les populations et au sein de celles-ci. Suite à une diminution significative de la population dans plusieurs colonies de reproduction,
l'Océanite cul-blanc (Hydrobates leucorhous) est passée de “Préoccupation mineure” à “Vulnérable” par l'UICN en 2016. Les raisons de
ces déclins ne sont pas claires et il est important d'identifier les menaces auxquelles l'espèce est confrontée dans son aire de reproduction
mondiale pour guider les orientations de recherche et informer les efforts de conservation. Nous avons sollicité l’avis de 37 experts
scientifiques de l'Océanite cul-blanc venant de huit pays sur l'importance des différentes menaces auxquelles l'espèce est confrontée sur
terre et en mer. Les menaces perçues pour les colonies existantes varient spatialement, avec un consensus au sein des régions pour les
principales menaces. La plupart des chercheurs s'accordent à dire que les principales menaces sur ou à proximité des colonies sont les
prédateurs aviaires et mammifères ainsi que l'attraction de la lumière. Les menaces en mer ont été moins étudiées et étaient plus difficiles
à identifier et à classer, mais comprennent les lumières en mer et les structures au large, les déplacements des proies et les contaminants.
Le changement climatique n'a pas été spécifiquement répertorié en raison de ses multiples répercussions, mais plusieurs des menaces
perçues sont liées au changement climatique. À l'échelle mondiale, l'introduction de mammifères prédateurs est un facteur déterminant
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du déclin ou de l'extinction des colonies d'oiseaux de mer. La biosécurité doit donc être considérée comme une mesure importante pour
la conservation des pétrels-tempête. De plus, combler les lacunes dans les connaissances et mettre en œuvre une série de stratégies
régionales pertinentes et ciblées conduisant à des succès de conservation modestes mais cumulatifs pourrait être la meilleure approche
pour cette espèce.

Key Words: expert opinion; Hydrobates leucorhous; Leach’s Storm-Petrel; seabird conservation; threats

INTRODUCTION
Human activities have grown at unprecedented rates in recent
decades, affecting all ecosystems (Marques et al. 2019, Baud et
al. 2021). Marine ecosystems, in particular, are deteriorating, with
degradation driven mainly by coastal development, offshore
energy production, fisheries, and pollution (Halpern et al. 2008,
2019). Perhaps it is not surprising, then, that declines in seabird
numbers are more pronounced than in most other bird groups
(Paleczny et al. 2015, Dias et al. 2019).  

Rodríguez et al. (2019) reviewed threats (defined as human-
induced or natural actions or events that negatively affect a
species) for shearwaters and petrels (Procellariidae), highlighting
that interspecific differences in threats are influenced by numerous
behavioural, geographic, and life-history factors. Much attention
has focused on population declines and threats to larger seabirds
(Baker et al. 2002, Phillips et al. 2016), with fisheries bycatch being
a major issue for divers (e.g., alcids and diving duck; Zydelis et
al. 2013) and vessel-attracted scavenging species such as
albatrosses (Anderson et al. 2011). For smaller species, such as
storm-petrels, invasive mammals, especially rodents, are raising
the most concern (Jones et al. 2008, Bolton et al. 2014, Dias et al.
2019), whereas fisheries bycatch is less of an issue (Bugoni et al.
2008, Jiménez et al. 2011; but see Pott and Wiedenfeld 2017).
Approximately 44% of storm-petrel species are listed on the
International Union for Conservation of Nature (IUCN) Red
List as Near Threatened, Vulnerable, Endangered, or Critically
Endangered, and data are insufficient to determine a threat
category for an additional 7% of species (n = 27; BirdLife
International 2021; Table A1.S1).  

Leach’s Storm-Petrel (Hydrobates leucorhous) was recently
uplisted from Least Concern to Vulnerable globally (BirdLife
International 2018), mainly as a consequence of population
declines at northwest Atlantic colonies. The eastern (i.e., Atlantic)
Canadian population was designated as Threatened by the
Committee on the Status of Endangered Wildlife in Canada
(COSEWIC; COSEWIC 2020), the UK population was moved
from Amber to Red by the UK Birds of Conservation Concern
5 (Stanbury et al. 2021), and the European population from Near
Threatened to Vulnerable in the European Red List of Birds
(Birdlife International 2021; Deakin et al. 2021). In general,
storm-petrels are difficult to monitor and, therefore, colony
abundance and population trends are either estimated
infrequently or not available (Olivier and Wotherspoon 2006;
Insley et al. 2014). However, Leach’s Storm-Petrel is one of the
most studied storm-petrel species, breeding from the Gulf of
Maine to southern Labrador in the western North Atlantic, to
Iceland, the British Isles, and coastal Norway in the eastern North
Atlantic, and from Hokkaido to the Aleutians and Baja
California in the Pacific (Pollet et al. 2021). In western North
Atlantic colonies, apparent adult survival rates for Leach’s Storm-
Petrels range from 79%–86% at a number of colonies, which is

lower than expected for population stability (Fife et al. 2015,
COSEWIC 2020), whereas limited data using a short time series
from two Pacific Ocean colonies suggest a higher (94%–99%)
apparent survival rate (Rennie et al. 2020). Concomitant with low
adult survival rate, population sizes have been decreasing at
several large Atlantic colonies (Wilhelm et al. 2015, 2019, Pollet
and Shutler 2018, 2019, d’Entremont et al. 2020, Deakin et al.
2021). Thus, reduced adult survival in western North Atlantic
colonies could be a key driver of population decline.  

Following the listing of Leach’s Storm-Petrel as Vulnerable by
the IUCN and Threatened by COSEWIC, a list of threats was
compiled (BirdLife International 2018, COSEWIC 2020). Yet,
understanding the impact of threats is complicated by the
enormous spatial range of Leach’s Storm-Petrels throughout
their life cycle. Leach’s Storm-Petrels forage hundreds of
kilometers from their colony during the breeding season (Halpin
et al. 2018, Hedd et al. 2018) and are trans-equatorial migrants
during the non-breeding season (Halpin et al. 2018, Pollet et al.
2019). Given that this species is globally distributed across a
seascape spanning a variety of threats and stressors, conservation
planning must also consider spatial and temporal variation in
risk. Current knowledge suggests that populations in the Pacific
may be faring better than those in the Atlantic, potentially because
of a different suite of threats in each ocean. Spatial variation is
invaluable for assessing cumulative risk (but see Lieske et al. 2020),
but it is often difficult to estimate given that multiple threats can
influence ecosystems in a variety of ways. As such, solicitation of
expert opinion is an effective approach to synthesize the current
state of knowledge regarding sensitivity of marine birds to threats
(Lieske et al. 2019). In this context, we created a survey with which
Leach’s Storm-Petrel researchers ranked threats for different
colonies to assess spatial variation in risk, with the goal of
supporting the selection of appropriate conservation strategies
across the global range. We also identified knowledge gaps to be
addressed to assist conservation of storm-petrels, and to inform
conservation planning processes.

METHODS
The lead author contacted 48 Leach’s Storm-Petrel researchers
from nine countries or territories (Canada, Faroe Islands, Iceland,
Japan, Mexico, Russia, St. Pierre et Miquelon, United Kingdom,
and United States) covering the species’ global breeding range to
complete a survey (Appendix 1). The selected researchers have
published articles on Leach’s Storm-Petrels and were at different
stages of their careers. The survey first asked researchers about
their professional affiliations, how long they had been working
with the species, and the location of the breeding colony(ies)
where they conducted their research. Hence, threats that had
caused extirpation of colonies were excluded from this survey.
Participants were then asked to rank the importance of seven
terrestrial and five at-sea threats (during both the breeding and
non-breeding seasons; Table 1) at colony(ies) where they conduct
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Table 1. Terrestrial and at-sea threats to Leach’s Storm-Petrel (Hydrobates leucorhous) at existing study
colonies given in the survey and added by participants. At-sea threats were presented separately for the
breeding and non-breeding season.
 

Already in the survey Added by participants

Terrestrial threats Mammalian predators Researcher disturbance
Mammalian herbivores Avian competition for burrow
Avian predators Reduction in canopy
Habitat loss
Onshore light attraction and collisions
Recreational disturbance
Coastal development

At-sea threats Mercury poisoning Climate change
Contaminant poisoning (other than mercury) Weather events
Offshore light attraction and collisions Predation at offshore platforms
Bycatch Prey depletion
Spatial shift in prey items

research or have in-depth knowledge. The threats were chosen
based on the COSEWIC assessment and status report
(COSEWIC 2020). For each ranking question, survey
participants could propose additional threats not provided in the
survey, and researchers were not required to rank all threats. It
was assumed that, although most research on Leach’s Storm-
Petrels is colony-based, researchers could also evaluate at-sea
threats.

DATA ANALYSIS
To determine which threat was the most important, weighted
ordinal values were determined by the number of threat options
in each question, with the top threat given the most weight. A
top-ranked terrestrial threat was given a value of seven and a top-
ranked at-sea threat was given a value of five. A lowest-rank
terrestrial or at-sea threat was given a value of one. When a survey
participant did not rank all proposed threats, we gave top values
to the ranked threats and assumed the others were negligible
(Table A1.S2). A score for each threat was calculated by summing
all weighted values at three different geographic scales, as follows:
global, ocean basin sector (western Atlantic, eastern Atlantic,
western Pacific, and eastern Pacific), and jurisdiction (state,
province, country). The number of participants was unequal
among regions (jurisdiction and basin scales); therefore, score
values varied greatly among regions. Hence, we determined for
each threat what percent of the total weighted score it represented
in each region.

RESULTS
Thirty-seven researchers (the authors) responded to the survey,
representing eight of the nine countries where Leach’s Storm-
Petrels breed (we were unable to secure responses from Russia),
with two, eight, twenty-four, and five responses for the western
and eastern North Pacific, and the western and eastern North
Atlantic, respectively. Most participants were government
employees (n = 16), followed by university researchers (n = 15),
but the group also included non-governmental organization
employees (n = 5) and a museum employee (n = 1). More than
two-thirds of participants (n = 26) had studied Leach’s Storm-
Petrels for more than 11 years and their combined experience
represented a minimum of 433 years.

Terrestrial threats
Globally, survey participants ranked the three most important
terrestrial threats that currently affect existing colonies as avian
predators, mammalian predators, and onshore light attraction,
with rankings differing among regions (Fig. 1; Table 2). Avian
predators were the top threat in all four ocean basin sectors, tied
with mammalian predation in the eastern Pacific. At the
jurisdiction level, avian predators had the highest or second
highest summed weighted scores in all but one case, the Faroe
Islands, where they ranked fourth. Mammalian predators were
ranked first, second, or third in the eastern Pacific, western
Atlantic, and eastern Atlantic, respectively, but were not perceived
as a threat in the western Pacific. At the jurisdiction level,
mammalian predators ranked among the top three threats in nine
of fourteen cases (64%). They were not ranked as a threat in four
jurisdictions (Japan, Mexico, St. Pierre et Miquelon, and Iceland).
Onshore light attraction received the third highest weight, ranking
third in the western Atlantic and eastern Pacific, but only fifth in
the western Pacific and eastern Atlantic. At the jurisdiction level,
onshore light attraction was ranked second in Newfoundland and
Labrador, New Brunswick, California (tied with avian predation),
and St. Pierre et Miquelon (tied with avian predation and habitat
loss), third in Alaska, British Columbia, and Mexico, and fourth
to sixth elsewhere (Fig. 1). There was a high consistency in the
responses from the survey participants at the jurisdiction level.
This concordance of expert opinion was not present at the basin
or global scales (Table A1.S3). The heterogeneity in perceived
threats is potentially the result of the combined effect of the
different specific issues faced at their colonies and the perceptions
of the survey participants.

At-sea threats during breeding season
The top four at-sea threats during the breeding season were
offshore light attraction, spatial shifts in prey, mercury, and
pesticides and other contaminants (Fig. 2; Table 3). Offshore light
attraction ranked first in the east Pacific, spatial shifts in prey
ranked first in the east and west Atlantic, mercury ranked second
in the west Atlantic and fourth in the eastern Pacific and the
eastern Atlantic. Pesticides and other contaminants were either
third (east Pacific, east Atlantic) or fourth (west Atlantic; Fig. 2).
At the jurisdiction level, spatial shifts in prey items were ranked
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Table 2. Weighted percent threat scores for each terrestrial threat for Leach’s Storm-Petrel (Hydrobates leucorhous) at existing study
colonies during the breeding season (number of survey participants who ranked each threat). Light: attraction to onshore lights. Threat
with the highest score for each ocean basin is bolded.
 

Avian 
predators

Mammalian
predator 

Light  Habitat
loss 

Mammalian
herbivore 

Disturbance Coastal 
development

Unknown 

West Pacific 33.3 (2) 0.0 (0) 13.9 (1) 16.7 (1) 0.0 (0) 0.0 (0) 16.7 (1) 19.4 (1)
East Pacific 28.3 (8) 28.3 (7) 21.4 (6) 4.1 (1) 1.4 (1) 11.1 (4) 2.7 (1) 2.7 (1)
West Atlantic 27.9 (23) 17.0 (19) 16.8 (17) 14.6 (14) 9.3 (11) 6.9 (12) 7.5 (9) 0.0 (0)
East Atlantic 30.5 (5) 19.1 (4) 8.6 (3) 8.6 (2) 20.9 (4) 11.4 (3) 0.9 (1) 0.0 (0)
Overall 28.5 18.5 16.5 12.1 9.0 7.9 6.2 1.3

first for seven jurisdictions, offshore light attraction was ranked
first for three jurisdictions, and mercury and pesticides and other
contaminants each ranked first for one jurisdiction (Fig. 2).
Survey participants were in agreement with the most important
threats within each jurisdiction but not at the basin or global scale
(Table A1.S4).

At-sea threats during non-breeding season
The top four offshore threats during the non-breeding season were
the same as during the breeding season, namely offshore light
attraction, spatial shifts in prey, mercury contamination, and
pesticide contamination (Fig. 3; Table 3). However, the order at
the ocean-basin scale was somewhat different. Offshore light
attraction ranked first as a threat in the east Pacific and west
Atlantic but only seventh in the east Atlantic, where spatial shifts
in prey items ranked first (Fig. 3; Table 3). At the jurisdiction
level, responses from survey participants were fairly consistent,
with spatial shifts in prey items ranked first in five jurisdictions,
offshore light attraction ranked first for four jurisdictions,
mercury ranked first for one jurisdiction, and pesticides and other
contaminants and prey depletion each ranked first for one
jurisdiction. The agreement among survey participants was
slightly more pronounced at the jurisdiction scale than at the basin
scale (Table A1.S5).

GENERAL PERSPECTIVES ON THREATS

Avian predators
Avian predators of Leach’s Storm-Petrels include Herring Gulls
(Larus argentatus and L. smithsonianus), Great Black-backed
Gulls (L. marinus), Lesser Black-backed Gulls (L. fuscus), Slaty-
backed Gulls (L. schistisagus), Great-horned Owls (Bubo
virginianus), Great Skuas (Stercorarius skua), and corvids
(Corvidae; Stenhouse et al. 2000, Votier et al. 2006, Veitch et al.
2016, Hey et al. 2019, Pollet and Shutler 2019, Pollet et al. 2021).
Corvids tend to destroy nest-burrows and presumably prey on
adults, eggs, and nestlings, whereas gulls, skuas, and owls mostly
prey on adults, although it is unclear if  this includes breeding or
non-breeding birds or both (Hoeg et al. 2021). However, the high
proportion of the local Leach’s Storm-Petrel population
estimated consumed annually at some colonies (e.g., 9% on Great
Island, Newfoundland, 16% on St. Kilda, Scotland [Stenhouse et
al. 2000, Votier et al. 2006]) is not sustainable if  all predation was
on breeding adults, suggesting that breeding and non-breeding
birds are being preyed on (Bicknell et al. 2013). In Newfoundland,
capelin (Mallotus villosus) can be a major part of Herring Gull
diets, and delayed capelin spawning caused gulls to use alternate

food sources, including seabirds (Massaro et al. 2000), such as
storm-petrels (Stenhouse and Montevecchi 1999). However, at
Atlantic colonies, gulls breed earlier than Leach’s Storm-Petrels.
When juvenile storm-petrels leave their burrows, gulls are not
attending colonies, which presumably reduces this direct
predation pressure on fledging individuals (Hoeg et al. 2021).
However, there is considerable predation of fledglings by gulls
during onshore wrecks and at illuminated coastal facilities (Burt
2022).  

In eastern Canada, Herring Gull and Great Black-backed Gull
populations decreased following the collapse of the northern cod
fishery that provided gulls with a large food source from offal
(Regular et al. 2013, Wilhelm et al. 2016, Weseloh et al. 2020). We
might therefore expect avian predation on storm-petrels to
decrease, although some individual gulls specialize in feeding on
storm-petrels (Pierotti and Annett 1991, Hey et al. 2019). In skuas,
specializing on seabirds and/or prey-switching from discards to
seabirds (including storm-petrels) results in high levels of storm-
petrel predation (Votier et al. 2006). Changes in regional fisheries
policy could also affect those behaviors in the future (Votier et al.
2004, Bicknell et al. 2013).  

Avian predation pressure may also be influenced by small
mammal population dynamics on islands, where avian predators
are initially attracted by the mammals but switch to seabirds once
the nesting season begins. In cases where conservation strategies
include removal of problematic mammals (e.g., mice, voles, and
hares), there is potential for unintended consequences of predator
diet-switching that inadvertently increases predation pressure on
storm-petrels (Rayner et al. 2007, Hervías et al. 2013). Dynamics
among avian predators and predation on storm-petrels and other
prey may be complex and differ among regions and colonies
(Stenhouse and Montevecchi 1999, Steenweg et al. 2011,
Thomsen et al. 2018). In some cases, removal of just a few
specialist avian predators has some positive effect on prey species
(Sanz-Aguilar et al. 2009, Scopel and Diamond 2018). Where
human activities have exacerbated avian predation, management
strategies should be carefully considered. These strategies must
also have clear objectives for both predator and prey, with an
evaluation plan to assess if  targets are met and the implementation
of adaptive management when objectives are not reached (Libois
et al. 2012, Fuentes et al. 2014, Bourgeois et al. 2015). In other
cases of avian predation from a native predator, management
might not be advisable. Avian species may also be competitors,
with examples of Atlantic Puffins (Fratercula arctica)
outcompeting Leach’s Storm-Petrel for nesting sites (Lormee et
al. 2012, Wilhelm et al. 2015, 2019).
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Fig. 1. Ranks of onshore threats for Leach’s Storm-Petrel (Hydrobates leucorhous) evaluated for extant colonies studied by the
authors. Threats are presented for each ocean basin sector (top) and state/province/country (bottom). Note that threats that may have
led to the extirpation of colonies are not factored into the ranking.

Mammalian predators
Seabirds tend to breed on islands free of mammalian predators
and, as a result, may lack anti-predator defense mechanisms (e.g.,
Buxton et al. 2016). Therefore, seabirds are highly vulnerable if
mammalian predators are introduced to a colony (Borrelle et al.
2018), and they rarely coexist with introduced mammalian
predators (De León et al. 2006). Historical presence of introduced
mammalian predators (mostly rats) has decimated storm-petrel
colonies (McClelland et al. 2008), making mammalian predators
the top threat for storm-petrels (Dias et al. 2019). Mammalian

predators can also naturally occur on seabird islands, and
measures to deal with naturally occurring mammals will be
different than for introduced species. Co-occurrences of
mammalian predators with storm-petrels will have different
outcomes depending on the density of other species, and it is not
necessarily a sustainable situation (Towns et al. 2006; but see
Montevecchi and Tuck 1987, Hammer and Bond 2022). The St.
Kilda field mouse (Apodemus sylvaticus), meadow vole (Microtus
pennsylvanicus), American mink (Neovison vison), North
American river otter (Lontra canadensis), and red fox (Vulpes
vulpes) have been detected at Leach’s Storm-Petrel colonies for
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Fig. 2. Ranks of at-sea threats during the breeding season for Leach’s Storm-Petrel (Hydrobates leucorhous) evaluated for extant
colonies studied by the authors. Threats are presented for each ocean basin sector (top) and state/province/country (bottom).

various periods of time and are potential predators of eggs,
nestlings, and/or adults (Skelpkovych and Montevecchi 1996,
Bicknell et al. 2009, 2020, Hoeg et al. 2021). For example, over
900 Leach’s Storm-Petrels were found in larders of red foxes over
six years on Baccalieu Island, Newfoundland and Labrador,
Canada, the species’ largest colony, which is now free of these
predators (Sklepkovych and Montevecchi 1996). Red foxes have
recently been detected in some colonies in Quebec (J.-F. Rail,
personal observation). In British Columbia, North American river
otters (Lontra canadensis) have been implicated in declines of
Leach’s Storm-Petrels (Carter et al. 2012). In one breeding season,
an American mink and North American river otter killed at least

700 adult Leach’s Storm-Petrels at Country Island Nova Scotia,
Canada (J. Rock, personal communication). Nova Scotia has the
largest mink farming industry in Canada (Bowman et al. 2017).
Mink are powerful swimmers, and a single mink, wild or escaped,
arriving in a seabird colony can have devastating impacts because
they engage in surplus killing (Roesler et al. 2012). In contrast,
introduced predators usually occur because of some accidental
or deliberate anthropogenic intervention and may have greater
impacts on seabird colonies. Introduced mammalian predators
are a major global problem at seabird colonies (Dias et al. 2019),
and both prevention and early detection of introduced predators
should be of high priority because costs associated with
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Table 3. Weighted percent threat scores for each at-sea threat for Leach’s Storm-Petrel (Hydrobates leucorhous) during the breeding
and non-breeding season (number of survey participants who ranked each threat). Light: attraction to offshore lights. Threat with the
highest score for each ocean basin is bolded.
 

Light  Spatial shift
in prey 

Mercury  Pesticides and
contaminants

Bycatch  Prey 
depletion†

Weather
events†

Unknown 

At-sea threats during the breeding season
West Pacific 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 100.0 (2)
East Pacific 37.8 (8) 20.7 (4) 9.8 (3) 17.1 (5) 8.5 (3) 0.0 (0) 0.0 (0) 6.1 (2)
West Atlantic 23.6 (19) 26.8 (18) 24.6 (18) 17.6 (17) 2.8 (8) 4.6 (3) 0.0 (0) 0.0 (0)
East Atlantic 6.9 (1) 34.5 (2) 10.3 (1) 13.8 (1) 0.0 (0) 0.0 (0) 17.2 (1) 17.2 (1)
Overall 24.7 (28) 25.4 (24) 20.0 (22) 16.8 (23) 3.7 (11) 3.2 (3) 1.2 (1) 5.0 (4)

At-sea threats during the non-breeding season
West Pacific 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 0.0 (0) 100.0 (2)
East Pacific 35.6 (7) 23.7 (4) 10.5 (3) 10.5 (3) 9.2 (3) 0.0 (0) 0.0 (0) 10.5 (2)
West Atlantic 27.4 (19) 24.9 (18) 21.0 (17) 15.0 (16) 4.6 (8) 5.0 (4) 2.1 (2) 0.0 (0)
East Atlantic 5.9 (1) 29.4 (2) 8.8 (1) 11.8 (1) 0.0 (0) 14.7 (1) 14.7 (1) 14.7 (1)
Overall 26.4 (27) 24.4 (25) 17.5 (21) 13.5 (20) 5.0 (11) 4.7 (5) 2.8 (3) 5.7 (5)
†Threat added by survey participants

mammalian eradication are high (Samaniego-Herrera et al. 2013),
and recovery of seabird colony ecosystems and seabird
populations after mammal eradication can take decades
(Drummond and Leonard 2010, Jones 2010; but see Jones et al.
2016).

Mammalian herbivores
The presence of mammalian herbivores is often the result of
deliberate introduction by humans. Mammalian herbivores are a
threat to Leach’s Storm-Petrels through soil erosion and
compaction, burrow destruction, and changes in vegetation
composition and structure (Peterson et al. 2005). For example, in
the western North Atlantic, the most commonly introduced
species are snowshoe hares (Lepus americanus), historically
introduced as food for island caretakers or as sources of pelts
(Wheelwright 2016), and sheep (Ovis spp.), introduced for
seasonal or year-round pasturing. White-tailed deer (Odocoileus
virginianus) are not introduced in Nova Scotia but often swim to
breeding colonies (I. Pollet, personal observation). Although they
are herbivores, sheep and deer regularly consume eggs of ground-
nesting birds and have been documented occasionally biting off
legs, wings, or heads of young seabirds (Furness 1988). However,
the presence of mammalian herbivores is a far lower mortality
risk to storm-petrels than is the presence of mammalian
predators.

Onshore light attraction and collisions
Leach’s Storm-Petrels travel to and from their colonies at night,
presumably to avoid diurnal predators, especially gulls (Watanuki
1986, Pollet et al. 2021). They likely use moonlight to visualize
landscape cues, but it is not their only cue (Yoda et al. 2017, Wynn
et al. 2020). Juveniles are especially attracted to light (Wilhelm et
al. 2021, Burt 2022) and, when onshore, birds are susceptible to
collisions with buildings and vehicles, more prone to predation,
and can become disoriented and grounded (Troy et al. 2013,
Rodríguez et al. 2015). Effects of this threat depend on the
proximity of a colony to onshore light sources and the type, color,
and direction of lights (Miles et al. 2010, Rodríguez et al. 2017,

Syposz et al. 2021). More than 1900 stranded Leach’s Storm-
Petrels were found on the island of Newfoundland during autumn
2018 and 2019 (Wilhelm et al. 2021), but these onshore stranding
events have not been monitored systematically (but see Burt 2022);
therefore, the total impact of onshore strandings is not well
known. From a conservation perspective, onshore light attraction
is probably one of the easiest threats to mitigate and reduce. For
example, people living on island communities are invited to turn
off their lights during peak fledgling seasons of endemic seabirds
(https://web.archive.org/web/20221019115210/https://www.lesjoursdelanuit.
re/; https://web.archive.org/web/20221019115223/https://birdlifemalta.
org/wp-content/uploads/2020/07/Guidelines-for-Ecologically-Responsible-
Lighting.pdf), and Kaua’i (Hawai’i, USA) residents are
encouraged to place stranded shearwaters in "Shearwater Aid
Stations" for care and safe release (Telfer et al. 1987). Such
measures could complement information campaigns to reduce
stranding events and rescue stranded birds (Ainley et al. 2001, Le
Corre et al. 2003, Wilhelm et al. 2021).

Disturbance
Recreational disturbance was considered a threat, and some
survey respondents added researcher disturbance to the threat
list. Effects of disturbance can be difficult to quantify.
Nonetheless, visitors and people handling birds at colonies of
burrow-nesting seabirds can negatively affect fledgling body mass,
cause nestling mortality, or provoke nest abandonment by
incubating or provisioning adults (Blackmer et al. 2004, Albores-
Barajas et al. 2009, Watson et al. 2014). Active burrows can
collapse from trampling. Some seabird colonies are difficult to
access, which limits human disturbance, but some colonies, such
as in the Faroe Islands, are situated near human settlements and
experience seasonal influxes of tourists (A. Ausems, personal
observation). Using paleo-ecological records, Duda et al. (2020)
documented a severe decline in a North American colony once
European settlers arrived in the area in the early 1800s, and the
colony has yet to fully recover.  

Recently, unmanned aerial vehicles (drones) have been used to
limit disturbance from researchers surveying surface-nesting
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Fig. 3. Ranks of at-sea threats during the non-breeding season for Leach’s Storm-Petrel (Hydrobates leucorhous) evaluated for extant
colonies studied by the authors. Threats are presented for each ocean basin sector (top) and state/province/country (bottom).

birds and even burrow-nesting birds when vegetation cover is
minimal (Borrelle and Fletcher 2017, Albores-Barajas et al. 2018).
Breeding status of burrow-nesting birds can be assessed with
burrow-scopes (i.e., endoscopic cameras), but human presence is
still required within colonies to operate them (Surman and
Nicholson 2009). Researchers are attempting to reduce
disturbance (trampling, repeated grubbing) in study plots where
long-term monitoring of population demography occurs by
developing remote methods such as Passive Integrated
Transponders (PIT) tag burrow-monitoring technology
(Zangmeister et al. 2009; D. Fifield, personal communication) and
acoustic monitoring (Orben et al. 2019).

Offshore light attraction and collisions
Lights at offshore oil and gas platforms are responsible for seabird
strandings or collisions at structures or incineration from contact
with flames (Wiese et al. 2001, Montevecchi 2006, Ronconi et al.
2015; Davis et al. 2017). In Nova Scotia and Newfoundland and
Labrador, Canada, offshore structures occur within the foraging
ranges of major Leach’s Storm-Petrel colonies (Hedd et al. 2018),
and Leach’s Storm-Petrels are by far the most numerous species
reported stranded, with 6920 individuals reported between 1998
and 2018 (87% of all reported birds), which undoubtedly is an
underestimate of the total numbers stranded (Gjerdrum et al.
2021). Leach’s Storm-Petrels breeding at Gull Island,
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Newfoundland and Labrador, flew within the light catch-basin
of an oil platform in 17.5% of trips, although they tended to
transit rapidly past platforms during the day (when light
attraction may be minimal), whereas exposure to oil platforms at
night occurred in only 1.1% of trips but represents a very large
number of individual trips considering the number trips each bird
takes during a season (Collins et al. 2022).  

Lighting at offshore operations is important for worker safety and
for maritime and air navigation, so mitigation strategies must not
increase human risks. In Canadian offshore industries, 76% of
stranded storm-petrels are found alive (Gjerdrum et al. 2021),
presenting opportunities for mitigation through search and
release. In addition to offshore oil and gas platforms, offshore
lights can also originate from emerging offshore wind facilities,
vessels in transit or working offshore, as well as cruise and cargo
ships. Squid-fishing fleets in particular use powerful lights to
attract squid to the surface (Waluda et al. 2004), and the location
and timing of squid-fishing season can coincide with either the
breeding or the migration of storm-petrels (McIver et al. 2016).
The extent and magnitude of strandings on vessels is largely
unknown with respect to potential population-level impacts.

Spatial shifts in prey and climate change
Spatial shifts in seabird prey can be an indirect consequence of
climate change. Changing environmental conditions, such as
rising sea surface temperature, can induce a spatial shift of marine
species because they gravitate to their preferred thermal
preferences (Grémillet and Boulinier 2009, Kleisner et al. 2016).
During marine heat waves, some Leach’s Storm-Petrels can
temporarily shift their feeding habits and forage on or near shore
(D’Entremont et al. 2021). During breeding seasons, seabirds in
general are central place foragers and thus limited in their foraging
range by the necessity to return to their colony (Elliott et al. 2009).
The foraging range of Leach’s Storm-Petrels is 400–800 km
depending on the colony (Hedd et al. 2018, Mauck et al. 2022),
which is a great distance considering they only weigh ~45g. If
preferred prey species shift outside of maximum viable foraging
range, seabirds must switch to alternative prey species that might
not provide sufficient nutrition or extend their foraging trips, with
the associated energy expenditure potentially leading to breeding
failure (Ponchon et al. 2014, Fayet et al. 2020). Some dietary shifts
in Leach’s Storm-Petrels have been observed at various timescales
(Hedd et al. 2009, Fairhurst et al. 2015). Ecological impacts of
these dietary shifts are not clear, though they may be related to
decreases in breeding success (Mauck et al. 2018).  

Some survey participants included prey depletion and climate
change as additional threats, and it is difficult to differentiate
spatial shifts in prey from prey depletion. Extreme weather events
were not provided as a threat category in the survey but were
added by several participants. Severe storms during the breeding
season may flood burrows and drown or chill chicks. Moreover,
the start of fall migration and the fledging of storm-petrel chicks
coincides with the peak of the hurricane season in the Atlantic,
and hurricanes and onshore winds may force storm-petrels
onshore (Boyd 1954, Teixeira 1987, Wilhelm et al. 2021).

Mercury
Mercury is a globally distributed, toxic metal that, at sufficient
concentrations, can have negative effects on neuroendocrine

systems, lead to reduced reproductive success, and induce motor
and behavioral problems (Wolfe et al. 1998, Scheuhammer et al.
2015, Evers 2018). In aquatic environments, mercury is
transformed by bacteria into methylmercury (Lehnherr 2014).
Methylmercury biomagnifies in food webs, and, during periods
of stress or poor body condition, may be released from tissue
reserves at concentrations that create physiological, physical, or
behavioural problems (Fort et al. 2015). Storm-petrels, and
Procellariiformes in general, have some of the highest tissue
mercury levels among seabirds (Carravieri et al. 2014, Becker et
al. 2016). Mercury exposure also varies spatially, and in the Gulf
of Maine, Leach’s Storm-Petrels have high mercury
concentrations compared to other sympatric seabirds (Goodale
et al. 2008, Bond and Diamond 2009). Mercury exposure in the
western North Atlantic, particularly in deep offshore waters,
appears to be high for some species, including Leach’s Storm-
Petrels (Goodale et al. 2008, Mallory et al. 2018; N. Burgess et al.
2019, personal communication) and Little Auks (Alle alle), another
planktivore (Fort et al. 2014). Mercury has been considered a
potential problem for Leach’s Storm-Petrels for decades (Pearce
et al. 1979, Elliott et al. 1992), but to date there is little evidence
of deleterious effects (Pollet et al. 2017, submitted; Krug et al.
2021).  

In recent years, reductions of mercury emissions in some regions
(North America and the European Union) and industrial sectors
(e.g., energy production) have been encouraging yet, in 2015,
global emissions were still 20% higher than in 2010 (UN
Environment Programme 2019). Increasing mercury emissions
and legacy mercury already in soil, sediments, and aquatic systems
will continue to produce methylmercury for millennia; therefore,
monitoring concentrations in biota should continue.

Pesticides and other contaminants
This broad category could include hydrocarbons, trace elements,
hydrophobic persistent organic pollutants, and plastics. Most of
these substances are poorly studied in Leach’s Storm-Petrels, but,
in Atlantic Canada, Elliott et al. (1992) found high levels of
selenium and cadmium in Leach’s Storm-Petrels relative to other
sympatric seabirds. However, the high levels of metallothionein
that Leach’s Storm-Petrels produce endogenously may enable
them to limit effects of high tissue concentrations of heavy metals
(Osborn 1978, Elliott et al. 1992). Organic compounds and
organochlorines also vary spatially in concentration (Megson et
al. 2014) and were at low concentrations in eggs of Fork-tailed
Storm-Petrels (Hydrobates furcata) and Leach’s Storm-Petrels in
Alaska, with PCB concentrations below toxicity thresholds (D.
D. Rudis and B. L. Slater 2009, personal communication). None
of these contaminant studies evaluated toxicological effects of
measured concentrations.  

Like many seabird species, Leach’s Storm-Petrels ingest plastic
(Bond and Lavers 2013). Krug et al. (2021) found high frequencies
of occurrence (87.5%) of plastic debris in recently fledged storm-
petrels in Atlantic Canada, and when using emetics (which recover
all plastic in the gastrointestinal tract), 48% of adults sampled at
Gull Island, Newfoundland and Labrador had also ingested
plastic (Bond and Lavers 2013). Leach’s Storm-Petrels spend most
of their time at sea in contact with the ocean surface, either to
feed or rest. This makes them vulnerable to hydrocarbons
discharged from vessels or offshore platforms and to more
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voluminous oil spills (Fraser et al. 2006, Wilhelm et al. 2007, Ellis
et al. 2013, Morandin and O’Hara 2016).

Bycatch
The unintentional killing of seabirds in fishing gear (seabird
bycatch), causes significant global mortality for medium-large
tubenose species (such as albatrosses and shearwaters) and divers
(e.g., alcids and diving ducks), killing hundreds of thousands of
individuals per year (Anderson et al. 2011, Croxall et al. 2012,
Zydelis et al. 2013, Montevecchi 2022), though bycatch appears
rare for Leach’s Storm-Petrels (Hedd et al. 2016, Jannot et al.
2021). Presumably this is related to their foraging mode and
dietary preferences and a lack of strong attraction to vessels,
fishing bait, or prey in nets.

KNOWLEDGE GAPS AND PRIORITIES FOR
FUTURE RESEARCH
Survey participants agreed that predation and light attraction
represent major population threats to Leach’s Storm-Petrels
across their breeding range, with perhaps less importance in the
eastern North Atlantic. With relatively easy access to colonies by
researchers or predators (compared to following birds at sea),
documenting predation seems an obvious and useful task, and
carcasses collected at colonies can provide clear evidence (Pollet
and Shutler 2019, Hoeg et al. 2021). Because storm-petrels spend
approximately 90% of their life at sea (Pollet et al. 2021), there is
significant impetus for quantifying impacts of threats away from
colonies. Offshore light attraction appears to be an important
threat, but the combined ranking of climate change effects (the
spatial shift and depletion in prey items and the weather events)
would rank higher than light attraction in many jurisdictions. Low
apparent adult annual survival and population declines at several
colonies sharing the same wintering areas suggest that threats
during the non-breeding season are highly important and are
areas of active investigation.  

Some participants were unable to identify at-sea threats, but that
does not mean threats are not present, and, in the Pacific, more
research is required to evaluate the population status and to
identify threats faced by Leach’s Storm-Petrels (Figs. 1 and 2).
Threats at sea are more difficult to observe, and the effects of
some threats may not be independent of other threats (e.g., Tartu
et al. 2013). Increasingly, however, development of miniature
tracking technology is enabling researchers to study at-sea
distribution and foraging ranges (Pollet et al. 2014a, 2014b, 2019,
Hedd et al. 2018) and to begin identifying threats to storm-petrels
in pelagic environments (Collins et al. 2022). Studying Leach’s
Storm-Petrels during the non-breeding season would involve
international collaboration because of the widespread
distribution of the species during that time (Halpin et al. 2018,
Pollet et al. 2019).  

Differences in perceived threats in different jurisdictions and the
agreement of survey participants within each jurisdiction but not
within each basin (Tables A1.S3, A1.S4, and A1.S5) highlight the
need to carefully tailor conservation measures in a context-
dependent way. Terrestrial threats are probably colony-specific,
and conservation measures implemented at a global scale might
have different results depending on the colony.  

In the western North Atlantic, tracking studies show little overlap
in foraging areas for Leach’s Storm-Petrels breeding at adjacent

colonies (Hedd et al. 2018), so threats encountered at sea during
the breeding season by birds from one colony might differ from
those of a neighboring colony. The spatial distribution of risk
varies in the seascape, and compared to other seabird species in
eastern Canada, Leach’s Storm-Petrels have high cumulative risks
from threats, which include marine traffic, light pollution, and
ship-source oil pollution (Lieske et al. 2020). During migration,
birds from different colonies within the same ocean basin may
follow similar routes, thereby being exposed to the same threats
during this portion of their annual cycle (Pollet et al. 2019).
Similarly, the degree of migratory connectivity in over-wintering
areas may provide common, or divergent, exposure to risk at both
the individual and colony levels (González-Solís et al. 2007,
Frederiksen et al. 2012, 2016).  

Seabirds have a diverse range of foraging strategies, body sizes,
and diets. Thus, threats will affect each species or guild differently.
For example, Lieske et al. (2019) concluded that Leach’s Storm-
Petrels had the highest species-specific risk score for sensitivity to
light pollution in the western North Atlantic (i.e., most sensitive
of all seabird species in the study). In contrast, in the same study,
Leach’s Storm-Petrels were ranked least sensitive to fisheries
bycatch. Survey participants in the present study ranked offshore
lights as the top offshore threat (Table 3). In our study, each threat
was considered separately, but, of course, threats are not mutually
exclusive and can have additive, synergistic, or antagonistic effects
(Crain et al. 2008, Piggott et al. 2015, Dias et al. 2019, Lieske et
al. 2020). For example, in a given breeding colony, Leach’s Storm-
Petrels could suffer from both predation and difficulties finding
enough prey to feed their chicks.  

The current assessment of spatial variation in threats affecting
Leach’s Storm-Petrels could be applied to some other storm-
petrel species living sympatrically because they share many life-
history traits. This includes European Storm-Petrels (Hydrobates
pelagicus) in the eastern North Atlantic and Fork-tailed Storm-
Petrels, Ashy Storm-Petrel (H. homochroa), and Least (H.
microsoma) and Black Storm-Petrels (H. melania) in the Pacific
(Carter et al. 2016, Halpin et al. 2018, Ausems et al. 2021, Bedolla-
Guzmán et al. 2021). In cases where a conservation planning
framework is developed to implement and monitor conservation
initiatives, spatial variation in threats should be considered to
direct conservation actions and biosecurity measures that are
most relevant to a particular colony or population (Russell et al.
2008). In this way, cumulative threats can be mitigated on a case-
by-case basis, contributing to an overall conservation strategy of
cumulative actions that maximize positive benefits to the global
Leach’s Storm-Petrel population.
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Appendix 1 

 

Experts’ opinions on threats to Leach’s Storm-Petrels across their global range 

 

Survey sent to participants. 

  

Question 1. 

What is your professional affiliation?          Non-governmental Organization 

                                                                      Government 

                                                                      Academic/ University 

                                                                      Other (specify) 

  

Question 2. 

Number of years working with Leach’s storm-petrels< 5 years 

                                                                      5 – 10 years 

                                                                      11 – 15 years 

                                                                      16 – 20 years 

                                                                      > 21 years 

Question 3. 

In which region does your field work take place?  Northwest Pacific 

                                                                              Northeast Pacific 

                                                                              Northwest Atlantic 

                                                                              Northeast Atlantic       

                                                                              Other (specify)                                    

  

Question 4. 

In which state/province/country does your field work take place? 

  

Question 5. 

What is the population size trend at your colony?  Increasing 

                                                                              Decreasing 

                                                                              Unknown                                           

Question 6. 

Rank these onshore threats/pressures at your colony (1 = most important, 7 = least 

important). 

If you think a threat is not applicable to the colony, you can leave that threat blank. 

                                                                      Mammalian herbivores 

                                                                      Mammalians predators 

                                                                      Avian predators 

                                                                      Recreational disturbance 

                                                                      Habitat loss 

                                                                      Onshore light attraction and collision 

                                                                      Coastal development 

  

Question 7. 

If you answer “other” in the previous question, please explain what threat it is. 

  

Question 8. 

Rank these offshore threats/pressures at your colony (1 = most important, 5 = least important) 

during the breeding season. 



If you think a threat is not applicable to the colony, you can leave that threat blank. 

                                                                      Mercury poisoning 

Pesticides and contaminants (other than 

mercury) 

Spatial shift in prey items 

Offshore light attraction and collision 

Bycatch 

Question 9. 

If you answer “other” in the previous question, please explain what threat it is. 

  

Question 10. 

Rank these offshore threats/pressures at your colony (1 = most important, 5 = least important) 

during the non-breeding season. 

If you think a threat is not applicable to the colony, you can leave that threat blank. 

Mercury poisoning 

Pesticides and contaminants (other than 

mercury) 

Spatial shift in prey items 

Offshore light attraction and collision 

       Bycatch 

  

Question 11. 

If you answer “other” in the previous question, please explain what threat it is. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table A1.S1. Number (percent) of northern and southern hemisphere storm-petrel species in each IUCN threat category. 

 

 Number 

of species 

Data 

Deficient 

Least 

Concern 

Near 

Threatened 

Vulnerable Endangered Critically 

Endangered 

Northern storm-

petrels 

18 0 (0) 8 (44) 3 (27) 4 (22) 2 (11) 1 (6) 

Southern storm-

petrels 

9 2 (22) 5 (56) 0 (0.0) 0 (0) 1 (11) 1 (11) 

Total 27 2 (7.5) 13 (48) 3 (11) 4 (15) 3 (11) 2 (7.5) 

 

 

 

 

 

 

Table A1.S2. Example of hypothetical weighted score calculations with five threats and two survey participants. Participant 1 scored threat B the 

highest, so the score is the maximum out of the five threats = 5. Participant 2 scored only four of the five threats. For each threat, scores from 

both participants are added (i.e.: score = 9 for threat A). The sum of the scores is 29. The percent score for threat A is 9/29 (i.e.: 31.03%). 

  
Participant 

 
Weighted score 

   

Threat 1 2 
 

1 2 
 

Σ of weighted scores Percent 

A 2 1 
 

4 5 
 

9 31.03 

B 1 3 
 

5 3 
 

8 27.59 

C 3 2 
 

3 4 
 

7 24.14 

D 5 4 
 

1 2 
 

3 10.34 

E 4 
  

2 0 
 

2 6.90 

Total 
      

29 100 

 

 



Table A1.S3: Mean ± SD (median / IQR) ranking of each terrestrial threat at the global, basin, and jurisdiction scale (number of responses). 

 

 

Mammalian 

Herbivore 

Mammalian 

Predator 

Avian 

predator Disturbance Habitat Loss 

Coastal 

Development 

Light 

Attraction Unknown 

Global (39) 

4.7 ± 1.7  

(5 / 2.2)  

5.3 ± 1.7  

(6 / 3.0) 

6.3 ± 0.9  

(6 / 1.0) 

3.3 ± 1.8 

 (3 / 2.0) 

4.8 ± 1.0  

(5 / 1.0) 

4.0 ± 2.0 

 (4 / 2.0) 

4.9 ± 1.4  

(5 / 2.0) 

5.5 ± 2.1 

 (5.5 / 1.5) 

West Pacific 

(2) 

NA 

  

NA 

  

6.0 ± 1.4  

(6 / 1.0) 

NA 

  

6.0 

  

6.0 

  

5.0 

  

7.0 

  
             JP 

(2) 

NA 

  

NA 

 

6.0 ± 1.4  

(6 / 1.0) 

NA 

 

6.0 

 

6.0 

 

5.0 

 

7.0 

 

East Pacific 

(8) 

2.0 

  

6.8 ± 0.4 

 (7 / 0.0) 

5.9 ± 0.7  

(6 / 0.5) 

4.0 ± 2.4  

(4 / 1.5) 

6.0 

  

4.0 

  

5.2 ± 1.3  

(5 / 0.8) 

4.0 

  

          AK (2) 

NA 

 

7.0 ± 0.0 

 (7 / 0.0) 

6.0 ± 0.0  

(6 / 0.0) 

4.0 

 

NA 

 

NA 

 

5.0 

 

NA 

 

           BC (3) 

2.0 

 

6.5 ± 0.7  

(6.5 / 0.5) 

6.0 ± 1.4  

(6 / 1.0) 

1.0 

 

NA 

 

4.0 

 

5.0 ± 2.8  

(5 / 2.0) 

NA 

 

           CA (2) 

NA 

 

7.0 ± 0.0  

(7 / 0.0) 

5.5 ± 0.7  

(5.5 / 0.5)  

4.0 

  

NA 

 

NA 

 

5.5 ± 0.7  

(5.5 / 0.5) 

4.0 

 

          MX (1) 0.0 0.0 6.0 7.0 0.0  0.0 5.0 NA 

West Atlantic 

(24) 

4.6 ± 1.7  

(5 / 2.5) 

4.9 ± 1.8  

(5 / 2.5) 

6.4 ± 0.8  

(6.5 / 1.0) 

2.9 ± 1.3 

 (3 / 1.0) 

4.7 ± 1.0  

(5 / 1.0) 

4.1 ± 2.0 

 (4 / 2.0) 

5.1 ± 1.3  

(5 / 2.0) NA  

           NL (6) 

2.0 

  

4.5 ± 0.6 

(4.5 / 1.0) 

6.7 ± 0.5 

(7 / 0.8) 

1.7 ± 1.2 

(1 / 1.0)  

3.6 ± 0.5 

(4.0 / 1.0) 

3.6 ± 1.3 

(3 / 2.0) 

6.2 ± 0.8 

(6 / 0.8) 

NA 

 

           NB (5) 

3.3 ± 1.2 

 (4 / 1.0) 

4.2 ± 2.3 

 (5 / 2.0) 

6.4 ± 0.5 

 (6 / 1.0) 

3.3 ± 0.6  

(3 / 0.5) 

5.8 ± 1.3 

 (6 / 0.8) 

4.0 ± 1.4  

(4 / 1.0) 

5.7 ± 1.2 

 (5 / 1.0) 

NA 

 

           NS (8) 

5.8 ± 0.4 

 (6 / 0.0) 

4.9 ± 2.0 

 (5 / 3.0) 

6.8 ± 0.5  

(7 / 0.2) 

3.7 ± 2.1  

(3 / 2.0) 

4.8 ± 0.5  

(5 / 0.2) 

1.0 

 

4.2 ± 0.8 

(4 / 1.0) 

NA 

 

       

    ME (2) 

7.0 

 

6.5 ± 0.7  

(6.5 / 0.5) 

5.5 ± 0.7  

(5.5 / 0.5) 

4.0  

  

5.0 

 

NA 

 

3.0  

 

NA 

 

          PM (2) 

3.0 

 

NA 

 

5.0 ± 1.4 

 (5 / 1.0) 

2.5 ± 0.7  

(2.5 / 0.5) 

5.0 ± 0.0 

 (5 / 0.0) 

7.0 ± 0.0  

(7 / 0.0) 

5.00 ± 1.4  

(5 / 1.0) 

NA 

 



    QC (1) NA  7.0 6.0 NA 5.0 NA 4.0 NA 

East Atlantic 

(5) 

5.5 ± 0.6  

(5.5 / 1.0) 

5.0 ± 1.4  

(5.5 / 1.5) 

6.4 ± 1.3  

(7 / 0.0) 

4.0 ± 2.6  

(3 / 2.5) 

4.5 ± 0.7 

 (4.5 / 0.5) 

1.0  

  

3.0 ± 1.0  

(3 / 1.0) 

NA 

  

          UK (3) 

5.3 ± 0.6  

(5 /0.5) 

5.7 ± 0.6 

 (6 / 0.5) 

7.0 ± 0.0 

 (7 / 0.0) 

2.5 ± 0.7 

 (2.5 / 0.5) 

4.0 

 

NA 

 

3.5 ± 0.7  

(3.5 / 0.5) 

NA 

 

             IS (1) NA  NA  7.0 NA NA NA NA NA  

            FO 

(1) 6.0 3.0 4.0 7.0 5.0 1.0 2.0 NA  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A1.S4: Mean ± SD (median / IQR) ranking of each at/sea threat during the breeding season at the global, basin, and jurisdiction scale 

(number of responses). 

 

 Mercury Pesticide 

Light 

attraction Bycatch 

Spatial  

Shift in prey 

Weather  

events Prey depletion Unknown 

Global (39) 

3.7 ± 1.0  

(4.0 / 1)  

3.0 ± 1.0  

(3 / 2.0) 

3.6 ± 1.2  

(4 / 3.0) 

1.4 ± 0.9  

(1 / 0.0) 

4.3 ± 1.0  

(5 / 1.2) 

5.0 

  

4.3 ± 0.6  

(4 / 0.5) 5.0  

West Pacific (2) NA  NA  

NA 

 NA  NA  NA  

NA 

 

5.0 ± 0.0 

(5 / 0.0) 

                JP (2) 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

5.0 ± 0.0  

(5 / 0.0) 

East Pacific (8) 

2.7 ± 1.5  

(3 / 1.5) 

3.5 ± 1.3 

 (3.5 / 1.5) 

4.4 ± 0.8 

 (5 / 1.0) 

2.3 ± 1.5  

(2 / 1.5) 

4.2 ± 1.0  

(4.5 / 1.2) 

NA 

  

NA 

 

5.0 

  

               AK (2) 

4.0 

 

3.0 

 

4.0 ± 1.4 

 (4 / 1.0) 

4.0  

 

5.0 

  

NA 

 

NA 

 

NA 

 

               BC (3) 

2.0 ± 1.4  

(2 / 1.0) 

3.0 ±1.4 

(3 / 1.0) 

5.0 ± 0.0  

(5 / 0.0) 

1.5 ± 0.7  

(1.5 / 0.5) 

3.5 ± 0.7 

(3.5 / 0.5) 

NA 

 

NA 

 

NA 

 

               CA (2) NA 5.0 4.0 NA NA NA NA 5.0 

             MX (1) NA NA 4.0 NA 5.0 NA NA NA 

West Atlantic 

(22) 

3.9 ± 0.9  

(4 / 1.8) 

2.8 ± 0.9  

(3 / 1.0) 

3.4 ± 1.2  

(3 / 2.2) 

1.0 ± 0.0  

(1 / 0.0) 

4.2 ± 1.0 

 (5 / 1.8) NA  

4.3 ± 0.6 

 (4 / 0.5) NA  

               NL (6) 

4.0 ± 0.7  

(4 / 0.0) 

2.7 ± 0.8  

(2.5 / 1.0) 

4.8 ± 0.4 

 (5 / 0.0) 

1.0 

 

3.2 ± 0.5 

 (3 / 0.2) 

NA 

 

NA 

 

NA 

 

              NB (5) 

4.0 ± 1.2  

(4 / 2.0) 

2.5 ± 0.6 

(2.5 / 1.5) 

2.5 ± 1.0  

(2 / 0.5) 

1.0 ± 0.0  

(1 / 0.0) 

4.2 ± 1.0  

(4.5 / 1.2) 

NA 

 

4.5 ± 0.7 

 (4.5 / 0.5) 

NA 

 

               NS (8) 

3.6 ± 1.1  

(4 / 1.0) 

2.5 ± 0.6  

(2.5 / 1.0) 

3.2 ± 0.8  

(3 / 0.8) 

1.0 ± 0.0  

(1 / 0.0) 

4.4 ± 1.1  

(5 / 0.5) 

NA 

 

NA 

 

NA 

 

              ME (1) 3.0 4.0  2.0 NA 5.0 NA NA NA 

             PM (2) 

4.5 ± 0.7  

(4.5 / 0.5) 

3.5 ± 0.7  

(3.5 / 0.5) 

2.5 ± 0.7  

(2.5 / 0.5) 

1.0  

 

5.0 

 

NA 

 

NA 

 

NA 

 

East Atlantic (4) 3.0 4.0 2.0 NA  5.0 ± 0.0 5.0  NA 5.0  



     (5 / 0.0)  

              UK (3) 3.0  4.0  2.0 NA 5.0 5.0 NA 5.0 

              FO (1) NA NA NA NA 5.0 NA NA NA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table A1.S5: Mean ± SD (median / IQR) ranking of each at/sea threat during the non-breeding season at the global, basin, and jurisdiction scale 

(number of responses). 

 

 Mercury Pesticide 

Light 

attraction Bycatch 

Spatial  

Shift in prey 

Weather 

events 

Prey 

depletion Unknown 

Global (39) 

3.3 ± 1.3  

(4 / 2.0)  

2.7 ± 1.1 

 (3 / 1.0) 

3.9 ± 1.2 

 (4 / 2.0) 

1.8 ± 1.1 

 (1 / 1.5) 

3.9 ± 1.2 

 (4 / 2.0) 

3.7 ± 1.2 

 (3 / 1.0) 

3.8 ± 1.8 

 (5 / 2.0) 

4.6 ± 0.5  

(5 / 1.0) 

West Pacific (2) NA  NA  

NA 

 NA  NA  NA  

NA 

 

5.0 ± 0.0 

 (5 / 0.0) 

                JP (2) 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

NA 

 

5.0 ± 0.0  

(5 / 0.0) 

East Pacific (8) 

2.7 ± 1.5  

(3 / 1.5) 

2.7 ± 0.6  

(3 / 0.5) 

4.5 ± 0.8 

 (5 / 0.8) 

2.3 ± 1.5  

(2 / 1.5) 

4.5 ± 0.6  

(4.5 / 1.0) NA  

NA 

 4.0  

               AK (2) 

4.0  

 

3.0  

 

4.0 ± 1.4 

 (4 / 1.0) 

4.0  

 

5.0  

 

NA 

 

NA 

 

NA 

 

               BC (3) 

2.0 ± 1.4 

 (2 / 1.0) 

2.5 ± 0.7 

 (2.5 / 0.5) 

5.0 ± 0.0 

 (5 / 0.0) 

1.5 ± 0.7  

(1.5 / 0.5) 

4.0 ± 0.0  

(4 / 0.0) 

NA 

 

NA 

 

NA 

 

               CA (2) NA NA NA NA NA NA NA 4.0  

             MX (1) NA NA 4.0 NA 5.0 NA NA NA 

West Atlantic 

(22) 

3.5 ± 1.3  

(4 / 2.0) 

2.6 ± 1.1  

(3 / 1.0) 

3.9 ± 1.2 

 (4 / 2.0) 

1.6 ± 0.9 

 (1 / 1.2) 

3.7 ± 1.1 

 (4 / 1.5) 

3.0 ± 0.0 

 (3 / 0.0) 

3.5 ± 1.9 

 (4 / 2.5) NA  

               NL (6) 

3.0 ± 1.4  

(2 / 2.0) 

2.2 ± 1.0  

(2.5 / 1.0) 

4.7 ± 0.5 

 (5 / 0.8) 

1.0 

 

3.7 ± 1.0  

(4 / 0.8) 

3.0 ± 0.0 

 (3 / 0.0) 

1.0 

 

NA 

 

              NB (5) 

3.2 ± 1.6  

(4 / 2.0) 

2.5 ± 0.6  

(2.5 / 1.0) 

3.8 ± 1.3  

(4 / 2.0) 

1.5 ± 1.0 

 (1 / 0.5) 

4.0 ± 1.2 

 (4 / 1.0) 

NA 

 

3.0 

  

NA 

 

               NS (8) 

3.5 ± 1.0  

(4 / 0.5) 

2.0 ± 1.0  

(2 / 1.0) 

3.8 ± 1.2  

(4 / 1.5) 

3.0 

 

3.8 ± 1.0 

 (3.5 / 1.8) 

NA 

 

5.0  

 

NA 

 

              ME (1) 4.0 5.0  3.0  1.0  2.0  NA NA NA 

             PM (2) 

5.0 ± 0.0 

 (5 / 0.0) 

4.0 ± 0.0 

 (4 / 0.0)  

2.0 ± 1.4  

(2 / 1.0) 

2.0  

 

3.0  

 

NA 

 

NA 

 

NA 

 

East Atlantic (5) 3.0  4.0  2.0  NA  5.0 ± 0.0 5.0  NA 5.0  



  (5 / 0.0)  

              UK (3) 3.0 4.0 2.0 NA 5.0 5.0 NA 5.0 

              IS (1) NA NA NA NA NA NA 5.0 NA 

            FO (1) NA NA NA NA 5.0 NA NA NA 
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